
BY NELS JOHNSON

O kay, so Flash may now be God to some (in the
Eric Clapton sense). One result of this theocracy
is that several old Web video questions are new

again: Who's watching? How often? How far into the clip?
Meaningful answers are of particular interest to Web 2.0
advertisers as ad revenue becomes the last best hope for
sites that don't sell retail goods or promote social networks
or are already cost centers for non-Web businesses.

In the past, collecting online playback metrics was difficult,
expensive and often unreliable. Now, thanks to advances in
ActionScript and a software platform known as AJAX, any Web
media producer with Flash Studio and basic HTML/Javascript (OK
and PHP) skills can build a clip tracking system on a standard Web
server at very little expense, The result is accurate, DIY viewership
reporting.

The keys to success are: 1) understanding how ActionScript in
an embedded SWF file communicates media playback events to
JavaScript on the same Web page, and 2) learning how JavaScript
can use AJAX to automatically send those time and date-

stamped events - perhaps including user geo and browser data -
to a simple MySQL database. Armed with such capabilities, you
can easily publish private Web pages for advertisers (and other
authorized clients) who aggregate, collate and otherwise make
sense of all that raw metered data.

The rest of this story provides instructions on how to design
and build a basic version of the system described above, includ-
ing full source code and links to a sample working Web site.

ACTIONSCRIPT/SWF FILE DEVELOPMENT

First the media elements. Open a new .fla project in Flash Studio
(I used Version 8 Professional in this example) then instantiate an
FLVPlayback component with the following properties: name =
vid, video window size = 320x240 (for example), position = upper
left, autoplay = false. You can use defaults for the other proper-
ties but leave contentPath blank unless you don't care about on-
the-fly clip selection (demonstrated below).

Now the ActionScript, which controls the video clip refer-
enced by the FLVPlayback component named vid. You can cut
and paste the code below directly into the Actions window for

import flash.external.ExternalInterface;

ExternalInterface.addCallback("playVideo", null,
playVideo);
ExternalInterface.addCallback("pauseResume", null,
pauseResume);

ExternalInterface.addCallback("change_vid", null,
change_vid);
ExternalInterface.addCallback("bigVideo", null,
bigVideo);
ExternalInterface.addCallback("smallVideo", null,
smallVideo);

ExternalInterface.addCallback("playback_complete",
this, end_vid);
ExternalInterface.addCallback("cuepoint_alert", this,
cuepoint_alert);

var myFLV:String;
var listenerObject:Object = new Object();

function playVideo():Void {
vid.play();

}
function pauseResume():Void {

vid.pause();

}
function change_vid(new_vid):Void {

vid.contentPath = new_vid;
vid.addASCuePoint(10, "elapsed_time");

}
function bigVideo():Void {

vid.setSize(320,240);
vid.x = 0;
vid.y = 0;

}
function smallVideo():Void {

vid.setSize(160,120);
vid.y = 60;
vid.x = 80;

}
listenerObject.complete =
function(eventObject:Object):Void {

ExternalInterface.call("playback_complete");
};
listenerObject.cuePoint =
function(eventObject:Object):Void {

ExternalInterface.call("cuepoint_alert");
};
vid.addEventListener("complete", listenerObject);
vid.addEventListener("cuePoint", listenerObject);
vid.contentPath = "";

��
AA

CC
TTII

OO
NN

SSCC
RRII

PPTT
//SS

WW
FF

FFII
LLEE

 DD
EEVV

EELL
OO

PPMM
EENN

TT

3322 dv january 2008 www.dv.com

AUDIENCE AWARENESS
METERING VIEWERSHIP IS AN ESSENTIAL COMPONENT
TO THE SUCCESS OF YOUR FLASH VIDEO PROJECT.

www.dv.com dv january 2008 3333

the first frame of Layer 1 of your project.
The ActionScript shown above (specific context for each

object is available in the Flash Studio help system) breaks down
into three functional sections: inclusion and use of the callback
facility of ExternalInterface, instantiation and exploitation of the
ListenerObject and integration of these two entities (plus the five
other small functions) with the FLVPlayback object. Reading
through the script several times will give you at least a general
idea of these object dependencies and interactions.

The main takeaways are: 1) the addCallback methods let
JavaScript in the Web page call the internal ActionScript func-
tions, and 2) the addListener methods allow ActionScript to tell
Javascript (in the Web page) when clip playback is complete or (in
this case) 10 seconds have elapsed. It's worth remembering that
all this ActionScript comprises functions related to interaction
with the clip from outside the SWF file. No stock or otherwise tra-
ditional SWF controls are enabled or employed. You can publish
your SWF (from Flash Studio) without further ado (or accompa-

nying HTML) and keep it handy for use as shown below.

JAVASCRIPT/HTML FILE DEVELOPMENT

The complete text of the HTML file that contains the SWF file
that controls the Flash video clip can be procured by viewing
(and saving) the source of the Web page browse-able at
http://www.fakedoom.com/dvexpo2007/floater.htm. (There is
not enough room here for a hard copy of this particular code list-
ing). If you have any trouble saving the HTML file on your desk-
top, please contact me via e-mail at njohnson@downrecs.com,
and I'll send you back a copy. (See Figure 1.)

This HTML file comprises all of the JavaScript necessary to
control an FLV video stream selected from a list box, as well as a
barebones AJAX routine that writes the playback event data to
a MySQL database via a PHP file (source shown below) on the
same server. There are no external .JS files. You'll also be able to
change the size of the Flash video window (thanks to the call-
backs enabled back in the SWF file ActionScript) and run all

Figure 1: The Web
page containing
the Flash Video.

<?php
session_start();
$chandle =
mysql_pconnect("db696.mydbserver.net",
"dbo635476543", "7Yrf4Wx") or
die("Connection Failure to Database");
$database="db876573524";
mysql_select_db($database, $chandle) or
die ("Database not found.");

if ($_POST["state"] == "partial") {
$query1="insert into tbl_flash_play-

er_data (";
$query1= $query1 . "id,";
$query1= $query1 . "clip_name,";
$query1= $query1 . "campaign,";
$query1= $query1 . "state) ";
$query1= $query1 . "values(";
$query1= $query1 . "'" .

$_POST["showtime_id"] . "'" . ",";
$query1= $query1 . "'" .

$_POST["clip_name"] . "'" . ",";
$query1= $query1 . "'" . $_POST["cam-

paign"] . "'" . ",";
$query1= $query1 . "'" .

$_POST["state"] . "'" . ")";
} else {

// assume state is complete here
$query1 = "update

tbl_flash_player_data set state = '" .
$_POST["state"] . "' ";

$query1 = $query1 . "where id = '" .
$_POST['showtime_id'] . "'";
}
$result = mysql_db_query($database,
$query1) or die("Failed Query");
mysql_free_result($result);
mysql_close($chandle);
?>

��
WW

EEBB SSEERRVVEERR//DD
AA

TTAA
BBAA

SSEE SSEERRVVEERR SSEETTUU
PP

Figure 2: The struc-
ture of the MySQL
database.

3344 dv january 2008 www.dv.com

aspects of the show from a floating control panel (thanks to
JavaScript).

WEB SERVER/DATABASE SERVER SETUP

The final piece of software development necessary to record video
playback events (resulting from users visiting Web pages and playing
Flash video clips) is composing the page that writes to your online
database. Story size restrictions prevent a discussion of server hard-
ware configuration, but all of the code presented herein can easily be
run on $50-per-month off-the-rack equipment available from the likes
of www.godaddy.com and www.1and1.com (host of the demo
pages used in this article).

Note that this page employs PHP (the file should have a .php
file extension if you use it in production). While not all
HTML/Javascript programmers may be comfortable with PHP, the
page is short and offers a glimpse of how PHP works with a data-
base - in this case MySQL (see Figure 2). Because PHP runs on the
server (JavaScript and ActionScript run on the client), only the
output of the page will be shown via your browser's View Source.
The PHP code that generates the output, also short and sweet, is
shown in the final listing below.

This is all it takes to get started or add value to existing instal-
lations. At some point, a client will ask if you can provide such
services, and pointing to a working example (however simple)
often buys a lot of credibility.

AUDIENCE AWARENESS

<html>
<head>
</head>
<body>
<center>
<h1>Flash Video Playback Data</h1>
<?php
<?php
session_start();
$chandle = mysql_pconnect("db696.mydbserver.net",
"dbo635476543", "7Yrf4Wx") or die("Connection
Failure to Database");
$database="db876573524";
mysql_select_db($database, $chandle) or die
("Database not found.");
$query1="select * from " . "tbl_flash_player_data";
$result = mysql_db_query($database, $query1) or
die("Failed Query");

//build the html table to present results
$i=0;
echo "<table border=1>";

echo "<tr>";
while ($i < mysql_num_fields($result)) {

$field_name=mysql_fetch_field($result, $i);

echo "<th>", $field_name->name, "</th>";
$i++;

}
echo "</tr>";

while ($thisrow=mysql_fetch_row($result)) { //get one
row at a time

echo "<tr>";
$i=0;
while ($i < mysql_num_fields($result)) { //print all

items in the row
echo "<td>", $thisrow[$i], "</td>" ;
$i++;

}
echo "</tr>";

}
echo "</table>";

mysql_free_result($result);
mysql_close($chandle);

?>
</center>
</body>
</html>��

NN
OO

TT
SSUU

RREE
 WW

HH
AA

TT
TTOO

 CC
AA

LLLL
 TT

HH
IISS

 BB
OO

XX

300 WORDS/IMAGES NEEDED

